regnety_160.tv2_in1k

我要开发同款
匿名用户2024年07月31日
17阅读
开发技术pytorch
所属分类ai、timm、image-classification
开源地址https://modelscope.cn/models/timm/regnety_160.tv2_in1k
授权协议bsd-3-clause

作品详情

Model card for regnety160.tv2in1k

A RegNetY-16GF image classification model. Pretrained on ImageNet-1k by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe).

The timm RegNet implementation includes a number of enhancements not present in other implementations, including:

  • stochastic depth
  • gradient checkpointing
  • layer-wise LR decay
  • configurable output stride (dilation)
  • configurable activation and norm layers
  • option for a pre-activation bottleneck block used in RegNetV variant
  • only known RegNetZ model definitions with pretrained weights

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
  • Params (M): 83.6
  • GMACs: 16.0
  • Activations (M): 23.0
  • Image size: 224 x 224
  • Papers:
  • Designing Network Design Spaces: https://arxiv.org/abs/2003.13678
  • Original: https://github.com/pytorch/vision

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('regnety_160.tv2_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_160.tv2_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 112, 112])
    #  torch.Size([1, 224, 56, 56])
    #  torch.Size([1, 448, 28, 28])
    #  torch.Size([1, 1232, 14, 14])
    #  torch.Size([1, 3024, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_160.tv2_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 3024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

For the comparison summary below, the rain1k, ra3in1k, chin1k, sw, and lion_ tagged weights are trained in timm.

model img_size top1 top5 param_count gmacs macts
regnety1280.swagft_in1k 384 88.228 98.684 644.81 374.99 210.2
regnety320.swagft_in1k 384 86.84 98.364 145.05 95.0 88.87
regnety160.swagft_in1k 384 86.024 98.05 83.59 46.87 67.67
regnety160.swin12kftin1k 288 86.004 97.83 83.59 26.37 38.07
regnety1280.swaglc_in1k 224 85.996 97.848 644.81 127.66 71.58
regnety160.lionin12kftin1k 288 85.982 97.844 83.59 26.37 38.07
regnety160.swin12kftin1k 224 85.574 97.666 83.59 15.96 23.04
regnety160.lionin12kftin1k 224 85.564 97.674 83.59 15.96 23.04
regnety120.swin12kftin1k 288 85.398 97.584 51.82 20.06 35.34
regnety2560.seerft_in1k 384 85.15 97.436 1282.6 747.83 296.49
regnetze8.ra3in1k 320 85.036 97.268 57.7 15.46 63.94
regnety120.swin12kftin1k 224 84.976 97.416 51.82 12.14 21.38
regnety320.swaglc_in1k 224 84.56 97.446 145.05 32.34 30.26
regnetz040h.ra3_in1k 320 84.496 97.004 28.94 6.43 37.94
regnetze8.ra3in1k 256 84.436 97.02 57.7 9.91 40.94
regnety1280.seerft_in1k 384 84.432 97.092 644.81 374.99 210.2
regnetz040.ra3in1k 320 84.246 96.93 27.12 6.35 37.78
regnetzd8.ra3in1k 320 84.054 96.992 23.37 6.19 37.08
regnetzd8evos.ch_in1k 320 84.038 96.992 23.46 7.03 38.92
regnetzd32.ra3in1k 320 84.022 96.866 27.58 9.33 37.08
regnety080.ra3in1k 288 83.932 96.888 39.18 13.22 29.69
regnety640.seerft_in1k 384 83.912 96.924 281.38 188.47 124.83
regnety160.swaglc_in1k 224 83.778 97.286 83.59 15.96 23.04
regnetz040h.ra3_in1k 256 83.776 96.704 28.94 4.12 24.29
regnetv064.ra3in1k 288 83.72 96.75 30.58 10.55 27.11
regnety064.ra3in1k 288 83.718 96.724 30.58 10.56 27.11
regnety160.deitin1k 288 83.69 96.778 83.59 26.37 38.07
regnetz040.ra3in1k 256 83.62 96.704 27.12 4.06 24.19
regnetzd8.ra3in1k 256 83.438 96.776 23.37 3.97 23.74
regnetzd32.ra3in1k 256 83.424 96.632 27.58 5.98 23.74
regnetzd8evos.ch_in1k 256 83.36 96.636 23.46 4.5 24.92
regnety320.seerft_in1k 384 83.35 96.71 145.05 95.0 88.87
regnetv040.ra3in1k 288 83.204 96.66 20.64 6.6 20.3
regnety320.tv2in1k 224 83.162 96.42 145.05 32.34 30.26
regnety080.ra3in1k 224 83.16 96.486 39.18 8.0 17.97
regnetv064.ra3in1k 224 83.108 96.458 30.58 6.39 16.41
regnety040.ra3in1k 288 83.044 96.5 20.65 6.61 20.3
regnety064.ra3in1k 224 83.02 96.292 30.58 6.39 16.41
regnety160.deitin1k 224 82.974 96.502 83.59 15.96 23.04
regnetx320.tv2in1k 224 82.816 96.208 107.81 31.81 36.3
regnety032.rain1k 288 82.742 96.418 19.44 5.29 18.61
regnety160.tv2in1k 224 82.634 96.22 83.59 15.96 23.04
regnetzc16evos.ch_in1k 320 82.634 96.472 13.49 3.86 25.88
regnety080tv.tv2_in1k 224 82.592 96.246 39.38 8.51 19.73
regnetx160.tv2in1k 224 82.564 96.052 54.28 15.99 25.52
regnetzc16.ra3in1k 320 82.51 96.358 13.46 3.92 25.88
regnetv040.ra3in1k 224 82.44 96.198 20.64 4.0 12.29
regnety040.ra3in1k 224 82.304 96.078 20.65 4.0 12.29
regnetzc16.ra3in1k 256 82.16 96.048 13.46 2.51 16.57
regnetzc16evos.ch_in1k 256 81.936 96.15 13.49 2.48 16.57
regnety032.rain1k 224 81.924 95.988 19.44 3.2 11.26
regnety032.tv2in1k 224 81.77 95.842 19.44 3.2 11.26
regnetx080.tv2in1k 224 81.552 95.544 39.57 8.02 14.06
regnetx032.tv2in1k 224 80.924 95.27 15.3 3.2 11.37
regnety320.pyclsin1k 224 80.804 95.246 145.05 32.34 30.26
regnetzb16.ra3in1k 288 80.712 95.47 9.72 2.39 16.43
regnety016.tv2in1k 224 80.66 95.334 11.2 1.63 8.04
regnety120.pyclsin1k 224 80.37 95.12 51.82 12.14 21.38
regnety160.pyclsin1k 224 80.288 94.964 83.59 15.96 23.04
regnetx320.pyclsin1k 224 80.246 95.01 107.81 31.81 36.3
regnety080.pyclsin1k 224 79.882 94.834 39.18 8.0 17.97
regnetzb16.ra3in1k 224 79.872 94.974 9.72 1.45 9.95
regnetx160.pyclsin1k 224 79.862 94.828 54.28 15.99 25.52
regnety064.pyclsin1k 224 79.716 94.772 30.58 6.39 16.41
regnetx120.pyclsin1k 224 79.592 94.738 46.11 12.13 21.37
regnetx016.tv2in1k 224 79.44 94.772 9.19 1.62 7.93
regnety040.pyclsin1k 224 79.23 94.654 20.65 4.0 12.29
regnetx080.pyclsin1k 224 79.198 94.55 39.57 8.02 14.06
regnetx064.pyclsin1k 224 79.064 94.454 26.21 6.49 16.37
regnety032.pyclsin1k 224 78.884 94.412 19.44 3.2 11.26
regnety008tv.tv2_in1k 224 78.654 94.388 6.43 0.84 5.42
regnetx040.pyclsin1k 224 78.482 94.24 22.12 3.99 12.2
regnetx032.pyclsin1k 224 78.178 94.08 15.3 3.2 11.37
regnety016.pyclsin1k 224 77.862 93.73 11.2 1.63 8.04
regnetx008.tv2in1k 224 77.302 93.672 7.26 0.81 5.15
regnetx016.pyclsin1k 224 76.908 93.418 9.19 1.62 7.93
regnety008.pyclsin1k 224 76.296 93.05 6.26 0.81 5.25
regnety004.tv2in1k 224 75.592 92.712 4.34 0.41 3.89
regnety006.pyclsin1k 224 75.244 92.518 6.06 0.61 4.33
regnetx008.pyclsin1k 224 75.042 92.342 7.26 0.81 5.15
regnetx004tv.tv2_in1k 224 74.57 92.184 5.5 0.42 3.17
regnety004.pyclsin1k 224 74.018 91.764 4.34 0.41 3.89
regnetx006.pyclsin1k 224 73.862 91.67 6.2 0.61 3.98
regnetx004.pyclsin1k 224 72.38 90.832 5.16 0.4 3.14
regnety002.pyclsin1k 224 70.282 89.534 3.16 0.2 2.17
regnetx002.pyclsin1k 224 68.752 88.556 2.68 0.2 2.16

Citation

@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r},
  booktitle = {CVPR},
  year = {2020}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论