eva_giant_patch14_224.clip_ft_in1k

我要开发同款
匿名用户2024年07月31日
38阅读

技术信息

开源地址
https://modelscope.cn/models/timm/eva_giant_patch14_224.clip_ft_in1k
授权协议
mit

作品详情

Model card for evagiatpatch14224.clipft_i1k

A EVA-CLIP image classificatio model. Pretraied o LAION-400M with CLIP ad fie-tued o ImageNet-1k by paper authors. EVA-CLIP uses MIM pretraied image towers ad pretraied text towers, FLIP patch dropout, ad differet optimizers ad hparams to accelerate traiig.

NOTE: timm checkpoits are float32 for cosistecy with other models. Origial checkpoits are float16 or bfloat16 i some cases, see origials if that's preferred.

Model Details

  • Model Type: Image classificatio / feature backboe
  • Model Stats:
  • Params (M): 1012.6
  • GMACs: 267.2
  • Activatios (M): 192.6
  • Image size: 224 x 224
  • Papers:
  • EVA-CLIP: Improved Traiig Techiques for CLIP at Scale: https://arxiv.org/abs/2303.15389
  • Origial:
  • https://github.com/baaivisio/EVA
  • https://huggigface.co/QuaSu/EVA-CLIP

Model Usage

Image Classificatio

from urllib.request import urlope
from PIL import Image
import timm

img = Image.ope(urlope(
    'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))

model = timm.create_model('eva_giat_patch14_224.clip_ft_i1k', pretraied=True)
model = model.eval()

# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)

output = model(trasforms(img).usqueeze(0))  # usqueeze sigle image ito batch of 1

top5_probabilities, top5_class_idices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddigs

from urllib.request import urlope
from PIL import Image
import timm

img = Image.ope(urlope(
    'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))

model = timm.create_model(
    'eva_giat_patch14_224.clip_ft_i1k',
    pretraied=True,
    um_classes=0,  # remove classifier .Liear
)
model = model.eval()

# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)

output = model(trasforms(img).usqueeze(0))  # output is (batch_size, um_features) shaped tesor

# or equivaletly (without eedig to set um_classes=0)

output = model.forward_features(trasforms(img).usqueeze(0))
# output is upooled, a (1, 257, 1408) shaped tesor

output = model.forward_head(output, pre_logits=True)
# output is a (1, um_features) shaped tesor

Model Compariso

Explore the dataset ad rutime metrics of this model i timm model results.

model top1 top5 param_cout img_size
eva02largepatch14448.mimm38mfti22k_i1k 90.054 99.042 305.08 448
eva02largepatch14448.mimi22kfti22k_i1k 89.946 99.01 305.08 448
evagiatpatch14560.m30mfti22ki1k 89.792 98.992 1014.45 560
eva02largepatch14448.mimi22kfti1k 89.626 98.954 305.08 448
eva02largepatch14448.mimm38mfti1k 89.57 98.918 305.08 448
evagiatpatch14336.m30mfti22ki1k 89.56 98.956 1013.01 336
evagiatpatch14336.clipft_i1k 89.466 98.82 1013.01 336
evalargepatch14336.i22kfti22ki1k 89.214 98.854 304.53 336
evagiatpatch14224.clipft_i1k 88.882 98.678 1012.56 224
eva02basepatch14448.mimi22kfti22k_i1k 88.692 98.722 87.12 448
evalargepatch14336.i22kft_i1k 88.652 98.722 304.53 336
evalargepatch14196.i22kfti22ki1k 88.592 98.656 304.14 196
eva02basepatch14448.mimi22kfti1k 88.23 98.564 87.12 448
evalargepatch14196.i22kft_i1k 87.934 98.504 304.14 196
eva02smallpatch14336.mimi22kfti1k 85.74 97.614 22.13 336
eva02tiypatch14336.mimi22kfti1k 80.658 95.524 5.76 336

Citatio

@article{EVA-CLIP,
  title={EVA-02: A Visual Represetatio for Neo Geesis},
  author={Su, Qua ad Fag, Yuxi ad Wu, Ledell ad Wag, Xilog ad Cao, Yue},
  joural={arXiv preprit arXiv:2303.15389},
  year={2023}
}
@misc{rw2019timm,
  author = {Ross Wightma},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  joural = {GitHub repository},
  doi = {10.5281/zeodo.4414861},
  howpublished = {\url{https://github.com/huggigface/pytorch-image-models}}
}

功能介绍

Model card for evagiantpatch14224.clipft_in1k An EVA-CLIP image classification model. Pretrained on

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论