Model card for evagiantpatch14224.clipft_in1k
An EVA-CLIP image classification model. Pretrained on LAION-400M with CLIP and fine-tuned on ImageNet-1k by paper authors. EVA-CLIP uses MIM pretrained image towers and pretrained text towers, FLIP patch dropout, and different optimizers and hparams to accelerate training.
NOTE: timm
checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 1012.6
- GMACs: 267.2
- Activations (M): 192.6
- Image size: 224 x 224
- Papers:
- EVA-CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389
- Original:
- https://github.com/baaivision/EVA
- https://huggingface.co/QuanSun/EVA-CLIP
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva_giant_patch14_224.clip_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva_giant_patch14_224.clip_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 257, 1408) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
eva02largepatch14448.mimm38mftin22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02largepatch14448.mimin22kftin22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
evagiantpatch14560.m30mftin22kin1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02largepatch14448.mimin22kftin1k | 89.626 | 98.954 | 305.08 | 448 |
eva02largepatch14448.mimm38mftin1k | 89.57 | 98.918 | 305.08 | 448 |
evagiantpatch14336.m30mftin22kin1k | 89.56 | 98.956 | 1013.01 | 336 |
evagiantpatch14336.clipft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
evalargepatch14336.in22kftin22kin1k | 89.214 | 98.854 | 304.53 | 336 |
evagiantpatch14224.clipft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02basepatch14448.mimin22kftin22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
evalargepatch14336.in22kft_in1k | 88.652 | 98.722 | 304.53 | 336 |
evalargepatch14196.in22kftin22kin1k | 88.592 | 98.656 | 304.14 | 196 |
eva02basepatch14448.mimin22kftin1k | 88.23 | 98.564 | 87.12 | 448 |
evalargepatch14196.in22kft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02smallpatch14336.mimin22kftin1k | 85.74 | 97.614 | 22.13 | 336 |
eva02tinypatch14336.mimin22kftin1k | 80.658 | 95.524 | 5.76 | 336 |
Citation
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
评论