Model card for tresnetm.miilin21k
A TResNet image classification model. Trained on ImageNet-21K-P ("ImageNet-21K Pretraining for the Masses", a 11k subset of ImageNet-22k) by paper authors.
The weights for this model have been remapped and modified from the originals to work with standard BatchNorm instead of InplaceABN. inplace_abn
can be problematic to build recently and ends up slower with memory_format=channels_last
, torch.compile(), etc.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 52.3
- GMACs: 5.8
- Activations (M): 7.3
- Image size: 224 x 224
- Papers:
- TResNet: High Performance GPU-Dedicated Architecture: https://arxiv.org/abs/2003.13630
- ImageNet-21K Pretraining for the Masses: https://arxiv.org/abs/2104.10972
- Pretrain Dataset: ImageNet-21K-P
- Original:
- https://github.com/Alibaba-MIIL/TResNet
- https://github.com/Alibaba-MIIL/ImageNet21K
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('tresnet_m.miil_in21k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tresnet_m.miil_in21k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 56, 56])
# torch.Size([1, 128, 28, 28])
# torch.Size([1, 1024, 14, 14])
# torch.Size([1, 2048, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tresnet_m.miil_in21k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@misc{ridnik2020tresnet,
title={TResNet: High Performance GPU-Dedicated Architecture},
author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman},
year={2020},
eprint={2003.13630},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{ridnik2021imagenet21k,
title={ImageNet-21K Pretraining for the Masses},
author={Tal Ridnik and Emanuel Ben-Baruch and Asaf Noy and Lihi Zelnik-Manor},
year={2021},
eprint={2104.10972},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
评论