任务
输入一张包含人脸图像(通过人脸检测模型crop出来或者手动crop),进行人脸2D关键点检测,输出人脸68个关键点的2D坐标。
68点人脸关键点定义
模型描述
该模型主要用于人脸2D关键点检测,主要基于STAR loss(CVPR2023)网络,通过扩充训练数据集,优化数据增强部分,调整训练策略方式, 在300W等人脸关键点公开数据集上指标上达到SOTA, 能很好地应用于真人人脸关键点检测场景。
训练数据
该模型主要使用学界300W,300VW, FaceSynthetics等包含68个人脸关键点标注信息的手动标注数据及渲染数据作为训练数据。
指标及可视化效果对比
指标对比
主要在300W数据集 (https://ibug.doc.ic.ac.uk/resources/300-W/) 上进行对比。
可视化效果对比
与目前学界较好的算法进行可视化效果对比,如下图所示,提供的模型特别在大角度(如半侧脸,侧脸)2D关键点检测更为精确。
安装及使用方式
您可以通过如下git clone命令,或者ModelScope SDK来下载模型
SDK下载
# 安装ModelScope
pip install modelscope
# SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Damo_XR_Lab/cv_human_68-facial-landmark-detection')
Git下载
# Git模型下载
git clone https://www.modelscope.cn/Damo_XR_Lab/cv_human_68-facial-landmark-detection.git
引用
@inproceedings{Zhou_2023_CVPR,
author = {Zhou, Zhenglin and Li, Huaxia and Liu, Hong and Wang, Nanyang and Yu, Gang and Ji, Rongrong},
title = {STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {15475-15484}
}
@inproceedings{Prados-Torreblanca_2022_BMVC,
author = {Andrés Prados-Torreblanca and José M Buenaposada and Luis Baumela},
title = {Shape Preserving Facial Landmarks with Graph Attention Networks},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year = {2022},
url = {https://bmvc2022.mpi-inf.mpg.de/0155.pdf}
}
@article{JLS21,
title={Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild},
author={Haibo Jin and Shengcai Liao and Ling Shao},
journal={International Journal of Computer Vision},
publisher={Springer Science and Business Media LLC},
ISSN={1573-1405},
url={http://dx.doi.org/10.1007/s11263-021-01521-4},
DOI={10.1007/s11263-021-01521-4},
year={2021},
month={Sep}
}
评论