Nxcode-CQ-7B-orpo is a Moolithic Preferece Optimizatio without Referece Model fie-tue of Qwe/CodeQwe1.5-7B o 100k samples of high-quality rakig data. We use a simple template to geerate the solutio for evalplus: Top 1 average score. Top 2 wirate. Here provides a code sippet with For persoal commuicatio related to this project, please cotact Nha Nguye Va (ha.guye@tq-solutio.com.v).Itroductio
Evalplus
EvalPlus
pass@1
HumaEval
86.6
HumaEval+
83.5
MBPP(v0.2.0)
82.3
MBPP+(v0.2.0)
70.4
"Complete the followig Pytho fuctio:\{prompt}"
Models
HumaEval
HumaEval+
GPT-4-Turbo (April 2024)
90.2
86.6
GPT-4 (May 2023)
88.4
81.17
GPT-4-Turbo (Nov 2023)
85.4
79.3
CodeQwe1.5-7B-Chat
83.5
78.7
claude-3-opus (Mar 2024)
82.9
76.8
DeepSeek-Coder-33B-istruct
81.1
75.0
WizardCoder-33B-V1.1
79.9
73.2
OpeCodeIterpreter-DS-33B
79.3
73.8
speechless-codellama-34B-v2.0
77.4
72
GPT-3.5-Turbo (Nov 2023)
76.8
70.7
Llama3-70B-istruct
76.2
70.7
Bigcode Leaderboard
Quickstart
apply_chat_template
to show you how to load the tokeizer ad model ad how to geerate cotets. You should upgrade the trasformers if you receive a error whe loadig the tokeizerfrom trasformers import AutoModelForCausalLM, AutoTokeizer
device = "cuda" # the device to load the model oto
model = AutoModelForCausalLM.from_pretraied(
"NTQAI/Nxcode-CQ-7B-orpo",
torch_dtype="auto",
device_map="auto"
)
tokeizer = AutoTokeizer.from_pretraied("NTQAI/Nxcode-CQ-7B-orpo")
prompt = """Complete the followig Pytho fuctio:
from typig import List
def has_close_elemets(umbers: List[float], threshold: float) -> bool:
""" Check if i give list of umbers, are ay two umbers closer to each other tha
give threshold.
>>> has_close_elemets([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elemets([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
"""
messages = [
{"role": "user", "cotet": prompt}
]
iputs = tokeizer.apply_chat_template(messages, add_geeratio_prompt=True, retur_tesors="pt").to(model.device)
outputs = model.geerate(iputs, max_ew_tokes=512, do_sample=False, top_k=50, top_p=0.95, um_retur_sequeces=1, eos_toke_id=tokeizer.eos_toke_id)
res = tokeizer.decode(outputs[0][le(iputs[0]):], skip_special_tokes=True)
Cotact iformatio
点击空白处退出提示
评论