TinyLlama-1.1B-Chat-v0.4

我要开发同款
匿名用户2024年07月31日
11阅读
所属分类ai
开源地址https://modelscope.cn/models/AI-ModelScope/TinyLlama-1.1B-Chat-v0.4
授权协议Apache License 2.0

作品详情

# TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ??. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T. The dataset used is OpenAssistant/oassttop12023-08-25 following the chatml format.

How to use

You will need the transformers>=4.31 Do check the TinyLlama github page for more information.

from transformers import AutoTokenizer
import transformers 
import torch
model = "PY007/TinyLlama-1.1B-Chat-v0.4"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

CHAT_EOS_TOKEN_ID = 32002

prompt = "How to get in a good university?"
formatted_prompt = (
    f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
)


sequences = pipeline(
    formatted_prompt,
    do_sample=True,
    top_k=50,
    top_p = 0.9,
    num_return_sequences=1,
    repetition_penalty=1.1,
    max_new_tokens=1024,
    eos_token_id=CHAT_EOS_TOKEN_ID,
)

for seq in sequences:
    print(f"Result: {seq['generated_text']}")
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论