传统的量化投资,使用技术指标比如均值,MACD,RSI,KDJ等以及它们的线性变种来产生信号。 有几个缺点:- 1、多为线性的,- 2、参数设置全凭经验,没有调优过程,- 3、规则偏静态的,无法适应跟进市场变化而自主进化。我们的目标,是把前沿人工智能技术,包括大模型,机器学习,深度学习,深度强化学习,知识图谱,时间序列分析等技术应用于金融大数据挖掘, 更好的赋能量化投资。声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!

下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态
评论