基于惯性和高分辨率声学数据融合的人类活动识别方法

我要开发同款
小可可可2025年01月15日
38阅读
开发技术特征处理、torch、算法设计、python、深度学习
所属分类特征提取、传感器、人类活动识别、人工智能
作品源文件
h5格式 5.52 MB
¥免费

作品详情

开发了一种深度学习模型,用于识别和分类人类的日常活动。同时,我们引入了一种新颖的音频隐私保护技术,该技术专门设计用于从高分辨率音频中提取非语音信息,并结合了惯性传感器数据。为了训练和测试我们的模型,我们构建了一个数据集,包含了多名参与者使用定制硬件设备进行的不同日常活动。我们详细阐述了数据的收集和预处理流程,并提出了一种创新的混合注意力机制的人类活动识别(HAR)方法。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论