计算机视觉库/人脸识别

1、主要模块有: 垃圾检测模块,在无人机巡检的视频中检测出相应的垃圾信息,并反馈给用户 2、我主要负责的工作: 整个程序全部由我负责完成 技术栈: 后端:Python 目标识别:yolov5 前端: Python的 tkinter模块 3 遇到的困难: 主要是垃圾的形状、颜色、大小、都不固定,这给识别目标带来了一定的困难。 解决:通过增加喂给AI模型更多数据、更细致的人工打标签,使得识别率达到了90%以上
1800pythonPython开发工具
1、项目应用于无人车在行进过程中对道路进行正确的识别,便于有效避障 2、功能主要是提取图像信息中的有效特征,实现道路与周围环境的分割,并将道路与环境通过二值图标注出来 3、主要框架为图像增强、特征提取、特征分析、特征降维、贝叶斯多线索融合机制、图像降噪
1040python计算机视觉库/人脸识别
基于人脸关键点框架获取到400+人脸3D关键点数据,并绘制到人脸上。 关键点数据覆盖:眼周、瞳孔、鼻子、额头、内外嘴唇…… MediaPipe
1460计算机视觉库/人脸识别
对于重点交通路段的车辆信息进行监测和违法取证。 亮点分析: 1、使用后台线程处理视频帧: 创建了 VideoProcessor 线程类,用于处理视频帧和检测。 通过信号 frame_processed 将处理好的帧和入侵信息传递回主线程,避免主线程阻塞。 2、硬件加速: 确保在OpenCV中使用硬件加速解码(这部分需要确认OpenCV的安装支持硬件加速)。 3、非极大值抑制优化: 使用 cv2.dnn.NMSBoxes 函数进行非极大值抑制,提高检测框的准确性。 4、异步任务: 将繁重的计算任务放在后台线程中执行,提高主界面响应速度。
1300python计算机视觉库/人脸识别
我们的交通标志识别系统利用先进的卷积神经网络(CNN),特别是YOLO-v5模型,来实现对交通标志的实时识别。这一系统经过大量数据的训练,已开发出高精度的识别模型,并成功集成到车载设备中。该车载设备配备摄像头,能够实时捕捉道路图像并通过模型进行分析,从而准确识别出各种交通标志。 主要功能: 1. 实时识别: 高效处理:基于YOLO-v5模型,系统能够在毫秒级别内处理图像并识别交通标志,确保在行车过程中不延迟。 精准识别:通过大量数据训练,模型具备高精度识别能力,能够准确分辨各种类型的交通标志。 2. 车载设备集成: 硬件集成:系统已成功嵌入车载设备,设备内置高性能摄像头,实时捕捉道路影像。 低功耗高性能:设备设计兼顾性能和功耗,确保长时间稳定运行。 3. 图像处理与分析: 实时图像输入:摄像头实时捕捉道路图像,系统即时处理输入图像。 标志识别输出:系统处理图像并输出识别结果,包括交通标志的类型和位置。 4. 项目优势: 高精度识别:利用YOLO-v5模型的优势,通过大量数据训练,实现对交通标志的高精度识别。 实时处理:系统能够在行驶过程中实时处理图像并识别交通标志,提供即时反馈,提升
1720C/C++嵌入式操作系统
在采样过程中通过顶棚摄像头图像,识别出车辆的车厢位置及拉筋信息,为采样提供定位坐标,广泛应用于火电厂、冶金行业、焦化厂等。
1781计算机视觉库/人脸识别
1.面向行业和所解决问题 行业:面向安防场景,移动端检测场景,自动驾驶场景,门禁轧机,工厂生成线等。 解决问题:目标物体检测和跟踪,目标物体识别,人脸识别,缺陷检测等 2.功能模块和作用 图像处理:图像去噪,去畸变,梯形矫正 检测,分割:使用yolov8模型进行目标物体的检测和分割 识别:使用深度学习模型提取特征并与预存库进行对比识别 3.所选技术和原因 数字图像处理技术:处理各类相机在各类场景下拍摄到的画面,消除由于畸变,噪声等造成的干扰 深度学习技术:使用深度学习模型对特定目标进行训练,保证在个各个复杂常见中能有稳定地检测到,分割出目标物 在移动终端部署:使用各类基于硬件边缘计算厂商的推理框架进行部署(nvidia的TernserRt,rockchip的rknn,海思的nnie等)
3981C/C++计算机视觉库/人脸识别
我们的驾驶员状态检测系统集成了多个YOLO-v5模型,部署在车载设备上,旨在实时监测和评估驾驶员的状态。系统利用摄像头捕捉驾驶员的图像,通过OpenCV进行处理后输入到YOLO-v5模型,从而检测出驾驶员的年龄、性别、驾驶状态(如是否集中)、是否疲劳等关键信息。这一系统能够有效提高行车安全,减少事故风险。 主要功能: 1. 驾驶员特征检测: 年龄识别:利用YOLO-v5模型分析驾驶员的面部特征,准确预测其年龄范围。 性别识别:基于面部特征和模型分析,实时识别驾驶员的性别。 驾驶状态监测: 2. 注意力检测:通过检测驾驶员的眼睛和头部姿态,判断其是否集中注意力。 疲劳检测:通过分析眼睛闭合状态、眨眼频率等指标,实时监测驾驶员是否疲劳。 图像处理与输入: OpenCV处理:使用OpenCV对摄像头捕捉的图像进行预处理,包括图像增强、裁剪和缩放等操作,以便更好地输入模型进行分析。 实时输入:系统能够实时处理和分析图像,确保监测信息的时效性和准确性。 项目优势: 多模型集成:系统结合多个YOLO-v5模型,提供全面的驾驶员状态检测,提升了识别的准确性和多样性。 高效图像处理:通过Open
1600C/C++图形/图像处理
项目包含图像处理模块、图像加载模块、参数控制模块、训练验证模块、模型导出模块…… 使用迁移学习、Pytorch、sklearn、混淆矩阵
950计算机视觉库/人脸识别
人脸识别源文件源码
打造一款集成前沿科技的网页应用,需融合精妙的前端设计与强大的后端支持。前端采用HTML/CSS/Django构建直观界面,利用Webcam API捕捉图像,实现流畅的人脸识别流程。后端依托Node.js或Python处理复杂逻辑,同时MySQL数据库确保用户数据的安全存储与高效检索。综合运用这些技术,可构建出既安全又便捷的登录系统,让用户体验未来科技的魅力。
2840前端计算机视觉库/人脸识别
1数据加载,对数据进行分析,使用数据增强训练等,优化数据分布; 2模型设计,考虑使用卷积神经网络还是transformer等网络结构; 3 模型训练,使用不同的策略进行训练; 4模型验证
1000计算机视觉库/人脸识别
1.该软件分为: 1)登录界面:用户登录,验证登录信息, 2)主界面:摄像机通道展示,摄像机视频预览,识别结果, 3)比对记录:人脸比对出来的结果记录, 4)抓怕记录:输入照片进行比对,在数据库中找出比对结果, 5)模板管理:目标任务的信息存储和展示 2.任务:完成以上各个界面开发 技术栈:1)数据库使用thrift 2)多线程 3)界面相关技术 4)算法 3.难点在于人脸识别算法,算法工程师负责
2010
识别数字 根据轨迹寻线送药 根据数字对应的房间 叫药瓶送至病房 激光循迹 另一个激光跟踪 双车巡线 后车跟随
2080图形/图像处理
目前能够跑通深度学习中目标检测、目标分割、对抗网络的代码,主要对这三个方向比较了解与专攻,几乎有所有的代码,包括一些最新的CVPR的代码,能够实现在自己电脑中训练、推理与部署。曾经尝试郭修改算法结构,使其达到更好的效果。
1710C/C++程序调试工具
商品识别源文件源码
对于售货店的商品进行编号,并将信息录入数据库,程序通过视觉识别是哪些商品,获得对应编号价格等信息.采用改良的yolo算法,运行速度快,效果准确,在多商品的情况下也能良好地检测。在有误导物存在,或遮拦的情况下也能较为准确的检测。源代码内存较小,利于部署。
320计算机视觉库/人脸识别
农业病虫害识别源文件源码
该项目面向农业行业,识别农业病虫害; 该项目包含如下模块: 1、数据处理模块,包括图片裁剪、增强、灰度处理等; 2、目标检测模块,检测图片中是否存在病虫害,识别病虫害的种类和位置; 3、可视化模块,对模型预测结果进行可视化; 4、API模块,访问API识别图片 该项目基于YOLO系列模型为框架,进行模型微调,满足特定图片和区域的识别
360python计算机视觉库/人脸识别
依据网页分析,获取需要的数据,采用多线程方式,加快爬取速度和运行速度。充分使用python自带的库,完成项目需求
1090数据查询
1、YOLOv5m+deepsort视觉跟踪算法。结合YOLOv5m的目标检测和deepsort的特征跟踪,该算法在复杂环境下确保了目标的准确与稳定跟踪。在计算机视觉中,这种跟踪技术在安全监控、无人驾驶等领域有着广泛应用。 2、调用实时摄像头拍摄数据,检测道路人员及车辆数量,判断道路拥堵情况。 3、在画面中自定义边界线,统计进出数量。
1510计算机视觉库/人脸识别
我是一名专注于深度学习和人工智能领域的软件工程师,拥有丰富的实践经验和扎实的技术背景。我擅长使用 Python 进行编程,并在图像处理和自然语言处理领域有着深入的研究和实践。我曾成功应用深度学习模型于新闻文本分类、人体姿态识别项目以及图像分类检测等任务。 项目经验 新闻文本分类系统: 行业应用:媒体、出版、内容分析 功能实现:自动化新闻内容分类,个性化新闻推荐,内容审核 技术亮点:利用预训练模型 BERT 提升分类准确性,支持多类别文本分类 人体姿态识别系统: 行业应用:健康监测、运动分析、安全监控、人机交互 功能实现:运动训练分析,老年人跌倒检测,异常行为识别 技术亮点:实时数据处理,高准确性的姿态识别算法,易于集成的 API 设计
1450python网络爬虫
人脸识别算法源文件源码
1.首先通过算法从图像中分割出人脸区域,基于深度学习的卷积神经网络(CNN)。 2.利用深度学习模型(如FaceNet、VGGFace)从检测到的人脸区域中提取具有区分性的特征向量。 3.使用相似度度量算法(如余弦相似度)将提取的特征向量与数据库中的特征向量进行比对,以实现身份识别。 4.支持多种应用场景,如1:1(单个人脸比对)和1:N(多个人脸比对)。
320图像(Image)
当前共130个项目
×
寻找源码
源码描述
联系方式
提交