机器学习/深度学习

领界AI源文件源码
该软件主要帮助客户开发对AI知识库的运用,使用客户产品知识库训练大模型回答相应问题,还能根据客户的语义,生成相应的图片(文生图、图生图)。 该项目主要分三大块,智能AI对话、智能生图、群聊功能,对于客户来说,主要解决了学生在机构中了解到机构的基本背景,通过机构的课程学习,能够使用app实现图片的生成,还能通过群聊与机构老师进行沟通。 该项目主要通过本地部署大模型(langchain+通义千问)实现智能对话,stablediffusion实现智能生图,通过调用腾讯即时通讯实现群聊功能,主要特点是大部分功能都通过开源框架本地部署来实现,能够节约外部调用api的费用。
550Java机器学习/深度学习
现实中,有数百万人患有严重的身体残疾丧失了交流以及与环境互动的能力,然而其感觉和认知功能通常仍然完好无损。这为利用BCI技术以改善患者生活质量提供了可能。P300-Speller是基于EEG的BCI系统中最热门的应用之一。正被用来解析那些思维正常却行动不便的病人的真实意图和想法,P300-Speller允许用户使用图形用户界面(GUI)与环境进行通信,可以让患者在生活上更加独立,甚至在一定程度上恢复他们的社交生活。因此,研究P300脑机接口技术具有极高的实际应用价值。
1640python机器学习/深度学习
深耕网络安全行业,负责的产品包括有SASE、云防火墙、云WAF、NDR和运维中心。 该作品主要展示PC端常用的Axure原型设计组件,辅助产品经理加快需求设计进度,细化产品原型文档、提高与前后端研发的交流沟通效率。
460安全相关框架
1. 利用keras深度学习框架实现CVPR论文中ghostnet模型的搭建。 2. 实现该模型的训练和测试,方便大家复现原论文结果。
2160机器学习/深度学习1
#软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅ #软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅ #软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅
400Java机器学习/深度学习2000.00元
python angular redis mysql nginx linux 作品分类(1-5个分类)(必填): 机器学习/深度学习 脚本编程语言 网络爬虫 日志分析和统计 项目构建 添加标签,按回车确认 HTML5开发相关文件管理器其他jQuery插件Chrome插件/扩展论坛系统BBS作业/任务调度网络爬虫日志分析和统计图形和图像工具Emoji 表情相关终端/远程登录搜索引擎项目构建REST/RESTful项目嵌入式操作系统
3190python机器学习/深度学习
西红柿品种识别源文件源码
基于YOLO V5的西红柿品种检测平台是一个高效、用户友好的软件,它能够快速上传和处理图像,准确识别西红柿的不同品种,并通过直观的界面展示识别结果。平台支持批量处理和数据导出,同时平台具有百科全书,通过各种方法来向用户展示西红柿的各种科普知识、前世今生、品种分布、销售统计,此外,它还具备易于集成的API接口和全面的客户支持服务。 采用先进的YOLO V5深度学习模型,该模型以其快速、准确的目标检测能力而闻名,特别适合于图像识别任务。通过训练和优化模型,实现了对西红柿品种的高准确率识别,减少了误判和漏判的可能性。
540机器学习/深度学习
1. 软件面向的行业和业务场景 该项目是基于强化学习的自我博弈模型,主要面向人工智能(AI)和机器学习领域,特别是在棋类游戏和智能对弈的应用场景。其核心目标是训练一个能够与人类对弈并不断优化策略的 AI 玩家。通过强化学习与蒙特卡洛树搜索(MCTS)相结合,这个软件可以应用于任何需要决策优化和策略训练的领域,如自动驾驶、金融预测、机器人控制等。 业务场景包括: 人工智能竞技游戏:用于训练 AI 玩家,模拟自我博弈,提升 AI 策略。 游戏开发与优化:游戏公司可以用该技术提升 NPC(非玩家角色)智能,增强游戏体验。 教育与研究:为机器学习和强化学习的研究者提供实用工具,帮助学习和理解深度强化学习的应用。 2. 项目分为哪些功能模块,对使用者来说具体实现哪些功能 该项目包括以下主要功能模块: Board(棋盘信息模块):该模块存储并管理棋盘的信息,定义了棋局的状态和每个玩家的操作。 MCTS(蒙特卡洛树搜索模块):用于构建决策树,通过模拟多次博弈来选择最优的落子策略。其核心思想是利用树状结构进行搜索,并根据模拟结果做出决策。 Residual Neural Network(残差
660python机器学习/深度学习
负责(基于python语言,torch框架,开源yolov5的目标检测项目,标记图片数据来源—robotflow) 其他(非本人)(包装为安卓测试应用)
3680机器学习/深度学习
人脸识别产品系统
本方案主要研究激活函数在人脸识别模型的搭建与训练过程中所产生的影响,具体分析不同激活函数对模型训练时间和准确率的作用。我们将从以下几个方面进行详细探讨:首先,使用不同的非线性函数进行模型搭建,比较其在训练过程中的表现差异;其次,针对饱和函数和非饱和函数进行分类研究,分析这两类函数在模型训练中的优势和不足。通过这些研究,我们期望能找到一种能够在保证准确率的前提下,缩短训练时间的激活函数,从而优化人脸识别模型的性能。
240Python数据处理100.00元
为了达到对低照度和高曝光图像的增强的目的,分别使用主观评价指标和客观评价指标对算法进行评价。基于pytorch设计网络结构输出参数对图像进行简单变换,网络使用VGG16的卷积结构并增加残差连接,使用输出层预测变换参数,设计了五种损失函数进行惩罚训练。并设计UI交互界面对比不同算法的实时增强情况。
1520机器学习/深度学习
智能导盲系统产品系统
国内盲人数量占一定的比例,为解决盲人安全出行问题,设计了一套穿戴式的头盔智能导盲系统。我在此项目中主要负责设计导盲系统的视觉避障、目标识别、视觉引导等算法的框架搭建。采用pytorch深度学习框架与YOLOv5目标检测网络训练的日常出行目标识别模型以及tof测距雷达,最后设计了设备终端将图像传输和数据远程传输到算法服务端的分布式系统实现对行人、车、阶梯、石头、树等有效识别并定位其方位和距离达到引导盲人通过语音和腕部传感器感知环境信息实现主动避障,经实验测试有一定的辅助引导效果并在第十届全国光电设计大赛中获得国家级二等奖。
200C/C++图形/图像处理
某企业AI智能客服项目旨在利用人工智能技术,为企业打造一个高效、智能的客户服务系统。该项目通过模拟人类客服的对话方式,与用户进行实时交流,解答用户的问题、提供帮助和建议,从而提升企业服务效率、降低运营成本,并增强用户的满意度和忠诚度。 一、模块组成 智能问答模块:基于自然语言处理、深度学习等技术,对用户的问题进行识别、分析和回答。该模块能够准确理解用户意图,提供精准的答案和解决方案。 用户交互模块:负责与用户进行实时对话,包括语音、文本等多种形式的交互。该模块通过语音识别、语音合成等技术,实现与用户的语音交互;同时,也支持文本输入和输出,方便用户进行文字交流。 知识库管理模块:存储和管理企业的各类知识、常见问题及解决方案。该模块支持知识的动态更新和维护,确保智能客服系统能够随时提供最新、最准确的信息。 数据分析模块:对用户行为、问题类型、服务效果等数据进行收集和分析,为企业提供有价值的业务洞察和改进建议。 二、使用到的技术 自然语言处理技术:用于将用户的语言转化为机器可理解的形式,从而能够准确理解用户的需求和问题。通过分词、词性标注、句法分析等处理,提取出用户问题中的关键
3241Java人工智能
人类染色体核型智能分析系统,是一款基于人工智能技术,对人类染色体中期图像进行自动分割、识别、计数,并自动生成核型图的遗传实验室辅助工具。 功能包括:图像管理、一键识别、导出核型图、手动编辑(笔刷、多边形、缩放、旋转、移动等)、配置管理。 达到的性能:分割准确率>90%,核型准确率>75%,GPU识别速度12张/分钟,CPU识别速度4张/分钟,支持GPU、CPU、XPU、NPU、TRT环境,支持Win、Linux操作系统。 目前已被多家医院遗传实验室采用。
3241python机器学习/深度学习
自主研发了一款安全平台,该平台集成了当前主流的CLIP后门攻防算法,能够有效支持用户管理、安全评测、信息查询等多种功能。平台通过灵活的架构设计,提供了高度可扩展的安全评估能力,帮助用户实时监控与分析模型的安全性。通过集成的攻防算法,平台能够针对CLIP模型进行全面的安全防护,确保模型在面对各种后门攻击时依然能够维持较高的鲁棒性和准确性。
190PythonPython开发工具
在采样过程中通过顶棚摄像头图像,识别出车辆的车厢位置及拉筋信息,为采样提供定位坐标,广泛应用于火电厂、冶金行业、焦化厂等。
1871计算机视觉库/人脸识别
这是一个简单的图像识别处理,基于python的CIFAR10数据集进行多次训练,再通过输入图片来识别该图片的内容是属于CIFAR10训练集中的哪类图片。整个作品的代码均为我一人制作。使用了机器学习基础中的CNN卷积代码实现图像识别。实现了再在整体数据集上的正确率达65%
1440机器学习/深度学习
1.针对大量共享单车停放混乱的现象,有必要加强对用户的提醒,引导他们合理地摆放单车。通过在应用程序中发送友好的提醒通知,以及在停车区域设置明确的指示标志,可以有效提升用户的自觉性,从而改善城市公共空间的整洁和通畅。 2.与传统的视觉判断方法相比,利用先进的技术手段,我们的系统能够更快速、准确地识别单车的停放位置。这不仅提高了工作效率,还大大增强了用户体验,用户能够更方便地找到并归还车辆,而无需为寻找停车点而烦恼。 3.该技术解决方案在相关服务场景中具有极高的复用价值。除了共享单车,其他共享交通工具和公共设施管理中也可应用这套系统,提供了一种可持续和高效的管理方式,有助于提升运营效率和用户满意度
380python位置信息(GPS/Location)
该项目主要分为三部分,算法、前端和后端,算法读取摄像头数据并实时处理,将处理后的结果发给后端保存,处理后的视频经流媒体发给前端显示;前端使用Vue框架,结合element-ui、Echarts实现了对人流量数据的图表分析功能。后端采用SpringBoot,实现数据的接收发送与用户权限管理。
380Java建站系统CMS
炼丹侠产品系统
成功部署与优化超大参数模型: 在大型算力服务器集群上成功联动部署并优化了V3、R1 671B DeepSeek 满血版等超大参数模型,使用 Ollama、SGLang、KTransformer、Unsloth 等推理框架进行部署对比,提升了模型的推理性能和应用效率。 高效管理多GPU服务器集群: 使用 NCCL 技术完成多GPU服务器联动部署,解决了多机多卡之间的通信与负载均衡问题,成功实现了大规模分布式训练和推理 完成大模型微调: 利用 Ollama-Factory 对 14B 以上大模型进行 Full、Freeze、LoRA 微调,优化了模型精度和运行效率,提升了业务需求的适应性。 搭建前沿AI工作流解决方案: 完成 SD、Flux、Wan2.1 等图文生成、图生图、图生视频应用的部署,并成功搭建 Dify、Coze、ComfyUI 等 AI 工作流解决方案,成功实现大模型在商业应用中的实际落地。 开发大模型代理: 制作多个大模型代理,通过调用大模型工具为具体业务场景提供定制化解决方案,成功实现了商业化应用的落地,在开放API平台上参与Python后端路由开发工作
310Pythondocker
当前共546个项目
×
寻找源码
源码描述
联系方式
提交